téarma.ie foclóir.ie teanglann.ie gaois.ie logainm.ie
Ar ais chuig leagan don scáileán Back to screen version
An Bunachar Náisiúnta Téarmaíochta don Ghaeilge
The National Terminology Database for Irish
Gach réimse All domains
Taispeáin ordlathas Show hierarchy
Roghanna Options
Matamaitic » Loighic & Tacartheoiric Is ionann aontas (nó suim) na dtacar A agus B agus tacar na mball sin a bhaineann le ceann ar a laghad den dá thacar. Is mar a chéile é do líon níos mó de thacair, fiú do líon éigríochta.
Mathematics » Logic & Set Theory The union (or sum) of the sets A and B is the set of those elements which belong to at least one of the sets. Similarly, for a greater (even infinite) number of sets.
GAball fir1
gu baill, ai baill, gi ball
(of set)
Is ball den tacar X é Y.
Tá Y ina bhall den tacar X.
Y is an element of set X.
Y is an element of the set X.
GAfothacar fir1
gu fothacair, ai fothacair, gi fothacar
Matamaitic » Loighic & Tacartheoiric Is fo-thacar den tacar B é an tacar A más gá agus más leor gur ball de B é gach ball de A.
Mathematics » Logic & Set Theory A set A is a subset of the set B if and only if every element of A is an element of B
Matamaitic » Loighic & Tacartheoiric Is ionann idirmhír na dtacar A agus B agus tacar na mball a bhaineann go comhuaineach le A agus le B. [Is mar a chéile é do líon níos mó tacar (fiú do líon éigríochta).]
Mathematics » Logic & Set Theory The intersection (or product) of the sets A and B is the set of elements belonging simultaneously to both A and B. [Similarly, for a greater (even infinite) number of sets.]
GAtacar fir1 éigríochta inchomhairthe
gu tacair éigríochta inchomhairthe
Matamaitic » Loighic & Tacartheoiric Tacar éigríochta, gur féidir a bhaill a chomhaireamh e.g. is tacair éigríochta inchomhairthe iad tacar na n-uimhreacha aiceanta agus tacar na slánuimhreacha ach ní hea tacar na réaduimhreacha uile ná tacar na n-uimhreacha cóimheasta uile.
Mathematics » Logic & Set Theory An infinite set, the members of which are countable e.g. the set of natural numbers or the set of integers are both countably infinite sets but the set of all real numbers or the set of all rational numbers are not.